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Abstract

Fault diagnostics shares with other process operations the realization that
with powerful knowledge representation schemes one can capture the expertise
of operators and control engineers all that was gained over the years of expe-
rience with process plants. Process specific knowledge can be used to improve
general purpose methodologies. There is a close coupling between diagnostics
and process operations design of plants. The proper design of a plant can
reduce the burden upon the task of diagnostics. Also, the information from
diagnostics can be used to continuously improve the performance of process
operations. The information from fault diagnostics can be incorporated into
the traditional solution paradigms of other process operations. The aim of this
paper is to provide a Case Based Reasoning (CBR) approach for technical di-
agnostics of mill fan system that would particularly share information with the
fault diagnostics module and also outline the nature of interaction that one can
expect.
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1. Introduction. Automated fault detection and technical diagnostics de-
pend heavily on input from sensors or derived measures of performance. In many
applications, such as those in the process industries, sensor failures are among
the most common equipment failures. So a major focus in those industries has
to be on recognizing sensor problems as well as process problems. Distinguishing
between sensor problems and process problems is a major issue. Our usage of the
term “sensors” includes process monitoring instrumentation for flow, level, pres-
sure, temperature, power, vibration and so on. In other fields such as network and
systems management, it can include other measures such as error rates, queue
lengths, dropped calls, etc. Also, the technical diagnostics as a decision support
activity rather than a fully automated operation is common in the management
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of large, complex operations such as those found in the process industries and
network and systems management.

The current operational mode could be a degree of functionality performance.
In the contemporary predictive diagnostics it is not classified only in two or three
classes (“normal-non-normal” or “normal-included-non-normal”), but is assumed
as a continuous degradation process. The quantitative estimation of the degra-
dation degree is a result of diagnostics method applications to the current sensor
data, gathered from SCADA, DCS and special measurements. In this way, the
prognostics must be considered as predictive process and future behaviour assess-
ment [1]. A highly critical stage is the installation degradation prognosis. The
accuracy of the predictions is a subject of many discussions. Two approaches for
rating are outlined [2]. The first one deals with the prognosis risk assessment.
The second one is based on the quality of the activities, adopted as a preventive
or rectification maintenance activities.

A main problem caused by prognostication in the damage of supplies is devel-
opment of smart technologies, e.g. prognostication models. Two main scientific
fields of the development of prognostication models such as diagnostic tasks are
formed. These approaches have been processed in a huge number of monographs
and publications [3–6]. In the last years the most interesting and famous ap-
proach in diagnostics of based model is Case Based Reasoning – CBR [7–9]. This
Case Based Reasoning approach is also applied successfully by diagnostics of real
processes [7, 9]. This approach is very useful by lack of sufficient measurements
and by analysis and derivation of precedents with their attributes. The adapta-
tion process of the procedure is realized using rule base derived by the experts.

2. Case Based Reasoning approach. Due to the substantial ambigu-
ity and variety of possible situations there is an additional procedure to specify
diagnostic features and symptoms using Case Based Reasoning, an approach en-
joying an increasing popularity in the intelligent diagnostics [10–12]. In accordance
with the settled tradition [12], precedents are represented in the form “problem-
solution”

(1) Ci = (pi, si).

The problem pi is accepted with the structure “attribute-value”

(2) pi = (ai, vi).

The vector of the attributes

(3) ai = (ai1, ai2, . . . , air)

includes the diagnostic features aij .

The basic peculiarity of the application of the precedents’ method in the case
of diagnostics with mill fans with continuous degradation of their vibrational and
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technical state is the offer to use dynamic precedents depending on the time of
observation k

(4) Ci = Ci(k).

Here (k) is the discrete time from the beginning of the mill fan campaign
after the basic repair. So the source to form dynamic precedents are the archival
records for all mill fans (eight of them) from the steam generator, operating with
exploitation cyclic periodicity of 2000–2500 h. In this way each problem pi (2)
and the value vi from the substantiation of the attribute ai (3) are related to a
fixed time moment k

(5)
pi = pi(k)
vi = vi(k).

It was postulated that the formation of the cases will be performed via a time
interval of TCBR = 2 h according to the available data from DCS, softsensing,
mathematical modelling or an operator’s decision.

The mill fan attributes in (3) have the following meaning: a1 – current time
from the beginning of the campaign k; a2 – quantity of fuel (from softsensing) B;
a3 – low fuel caloricity of working mass (from softsensing) QW

L ; a4 – temperature
at the entry of the intake drying gases (from DCS) θgis; a5 – temperature of the
air-fuel mixture at the exit from the mill fan (from DCS) θaf ; a6 – state of the
dust concentrator blades (manually from the operators) zCB; a7 – quantity of the
drying agent (from softsensing and modelling) GDA; a8 – quantity of secondary
air (from DCS, data fusion, mathematical modelling and softsensing) GSA.

The values

(6) vi(k) = (vi1(k), vi2(k), . . . , vir(k))

are related to the attributes ai at the moment k and they are defined as creeping
average analogical to formula (4). The averaging interval L, is as it is known [13],
an optimization problem and it is established experimentally.

The solution si, in cases of diagnostics, is presented in the form diagnostic
state S – technical actions for technical support M

(7) s(k) = (S,M(k)).

According to the already made assumptions three diagnostic states are ac-
cepted: S1 – operative; S2 – conditionally allowed; S3 – unallowable.

Each of the diagnostic states Sj is related to a given discrete moment of time
k and it also has a structure of the “attribute-value” type.

(8) Sj(k) = (G,H(k)) (i = 1, 2, 3).

The set of attributes G consists of elements gi

(9) G = (g1, g2, . . . , gm),
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where g1 – amplitude of vibrations (g1 ≡ AV ); g2 – root deviation of the amplitude
of vibrations (g2 ≡ σA); g3 – mill fan efficiency (g3 ≡ B); g4 – fan productivity
(g4 ≡ w); g5 – radial flame deviation (g5 ≡ ρ).

Each attribute gi has a value hi(k) at the discrete moment of time k and it
belongs to the vector H(k)

(10) H(k) = (h1(k), h2(k), . . . , hm(k)).

All values hi(k) are calculated as average with a procedure for creeping av-
erage for a given discrete time k using a formula analogous to (4).

The current state SMB(k) of a mill fan is related to some diagnostic state
Sj(k) using a classifier of the “comparison-with defined-thresholds” type based
on the values hi(k) using a system of N rules Ri, for (i = 1, N).

(11) Ri : IF h1 < ht
1 AND h2 < ht

2 AND . . . h5 < ht
5 THEN S ⊂ Si.

In the present paper a multistage procedure is accepted to estimate the mill
fan vibrostate – SV

MB where the defined limits ht
i are changed adaptively depend-

ing on the estimate of the root-mean-square value for the reduced noise in the
registered vibrations.

The actions for technical support M are presented as a multiset

(12) M = (M1,M2,M3,M4).

The components Mi (i = 1, 4) are subsets with the following components:

M1 – change in the mode parameters in cases of conditionally allowed diag-
nostic state, e.g.: M11 – load decrease; M12 – turnover decrease.

M2 – current repair, e.g.: M21 – cleaning sensors and pulse lines; M22 – test
and calibration of sensors; M23 –jalousie and valves set up; M24 – lubrication
improvement; M25 – tightening bolt compounds.

M3 – replacing elements without big breaks of the mill fan operation, e.g.:
M31 – replacing vibrosensors; M32 – change in the pulse lines; M33 – replacing
elements in the pressure system.

M4 – break for repair, e.g.: M41 – operative wheel repair; M42 – repair of
bearings; M43 – repair of the separator; M44 – mill fan housing repair (armored
plates); M45 – raw fuel feeder repair.

Part of the activities on technical support (12) may have also a value form
for their representation in the precedent, like:

m11 – mill fan load value; m12 – mill fan turnovers; m13 – jalousie and valves
state (in details).

It is accepted in the paper that the basic part of the attributes in the problem
section P and the solution S are presented by the simplest type of data: “number”
and “symbol”. Still for some attributes such representation by pairs “attribute-
value” is incomplete and they (especially in the portion of the supporting activities
M (12)) may include free text or they may contain links to other related external
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information. Part of this information may not be directly used in the CBR
algorithm but it gives the operators additional knowledge for secondary using of
archived results from the mill fan exploitation. Certain difficulties arise to apply
the approved procedure in order to follow the principle for local-global proximity
[7] in cases of current diagnostics with a time attribute k from the beginning of
the mill fan exploitation. The n-closest neighbours at the moment k are realized
using the weighed proximity measure between two states I and J .

(13) Sim(I, J) =

n
∑

i=1

wisimi(Ii, Ji)
∑

wi = 1.

Here Ii and Ji denote the values and wi > 0 is the weight of attribute ai from
(3). The symbol simi denotes a local proximity between the pair of diagnostic
states I(k) and J(k) at the moment k. It is accepted in the paper the proximity
measure simi to be normalized for the range [0, 1]; the Euclidean distance is used
for the calculation in [7]. At the arrival of new data, obtained through an interval
of TCBR = 2h, in cases of successive usage, formula (13) is transformed in the
following form:

(14) Sim(p(k), pi(k)) =

n
∑

i=1

wisimi(a(k), ai(k)).

Where p(k) is the current “new” problem for the mill fan state, pi(k) is the
existing i-th precedent for the mill fan state at moment k; a(k) and ai(k) are the
respective attributes the values of which are presented by the vectors v(k) and
vi(k). The fraction simi(a(k), ai(k)) representing the local proximity between
the attributes a and ai contains first of all knowledge for a specific domain (mill
fan diagnostics) and the weight coefficients wi reflect the relative meaning of
these attributes over the determination of the common proximity between p and
pi. In the case greater weights are assigned to the fuel amount (recursively), the
temperature of the aeromixture and the temperature of the gases in the gas intake
shaft because they are measured following DCS data.

Generally the application of the method with precedents to determine the
vibrational S

V,CBR
MB (k) and the common SCBR

MB diagnostic state is shown in [14].
Block CBR(n, k) is the generally accepted four-stage CBR procedure introduced
in [7] and widely used in the last 15 years [10, 13, 14]. Estimates of the mill fan
diagnostic state may be obtained with a discretization of TCBR = 2h, i.e. this
is a slower approach than the one of intelligent filtration where the interval of
discretization may be 20 min.

3. Numerical results. This paper considers diagnostics of the coal mill
fan system of unit 3 boiler 6 at Maritsa East 2 complex. The mill fan structure
is presented in [14]. The boiler which milling system is studied is a Benson type
once-though sub-critical boiler. There are four mills per boiler. Each mill fan
system has four radial bearings – two in the mill and two in the motor. The
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Distributed Control System (DCS) installed on the site is Honeywell Experion
Process Knowledge System (PKS R301). This is a cost-effective open control and
safety system that expands the role of distributed control. All the data used in
the present research are obtained from the DCS historian system. The duration
of the observations is 8 months in 2010.

In this paper we focus mainly on online monitoring systems, based on sensor
or other automated inputs. The main sensor information we have access to is
based on the vibration of the nearest to the mill fan rotor bearing block. The
determination and the usage of mill fan vibration state indicators are realistic
and profitable for the operative staff because vibrosensors are obligatory for con-
temporary DCS systems.

The next four Figures contain some of the processed vibrations data aimed
at excluding outliers. Only data that are around maximal density value of each
12 h sub-period are left. This is done due to the mentioned high non-stationary
nature of these data. Another purpose of this processing was to exclude stopping
periods from our investigation.

The results show that the power plant processes are inherently nonlinear in
nature. While the theory of linear quantitative model-based approaches is quite
mature, the design and implementation for nonlinear models is still an open issue.
The standard statistical and probabilistic (Bayesian) approaches for diagnostics
are inapplicable to estimate mill fan vibration state due to non-stationarity, non-
ergodicity and the significant noise level of the monitored vibrations. Promising
results are obtained only using computational intelligence methods (fuzzy logic,
neural and neuro-fuzzy networks), [15–19].

4. Conclusions. In this paper the problem of using the CBR design
to operate in the field of technical diagnostics is considered. Since the possi-
bility to predict eventual damages or wear out without switching off the device
is significant for providing faultless and reliable work avoiding the losses caused
by planned maintenance. It is also important to be able to predict failures on
time. Thus predicting the time of failure will allow determining of the moment
to stop it for replacement. This will allow prolongation of its working period en-
suring at the same time failures prevention. The future directions in the present
work will be the creation of predictive model able to reveal dangerous situations
on time.

The achieved results show that the vibrosignals may be successfully used as
a substantial additional symptom for isolation and diagnostics of mill fan system
which is not done at present. The assessment of the mill fan vibration state is a
complex problem due to the exceptionally big uncertainty in the measurements
which follows from the temporally recovered changes of multimode factors. The
mill fan vibration state S

V,CBR
MB is a valuable integral indicator for its working

capacity. In this paper are presented promising results using only computational
intelligence methods. Adequate for the case methods of computational intelli-
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Fig. 1. Processed data for the period of observation 01.07.–31.07.2010
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Fig. 2. Processed data for the period of observation 01.08.–31.08.2010
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Fig. 3. Processed data for the period of observation 01.09.–30.09.2010
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Fig. 4. Processed data for the period of observation 01.10.–31.10.2010
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gence (fuzzy logic, neural networks and more general AI techniques – the case
based reasoning method (CBR), machine learning (ML)) must be used.
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[10] Recèo-Garcia J. A., B. Diaz-Agudo, A. A. Sanches-Ruiz, P. A. Gonzales-

Calero. Expert Update, 10, 2010, No 1.
[11] Eremeev A., P. Varshavskiy. Journal on Information Theories and Applications,

15, 2008.
[12] Pal S., S. Shin. Foundation of Soft Case-Based Reasoning, John Wiley, 2004.
[13] Norbicz J., J. Koscielny, Z. Kowalczuk, W. Cholewa (eds). Fault Diagnosis

Models, Artificial Intelligence, Applications, Springer, 2004.
[14] Hadjiski M., L. Doukovska. Compt. rend. Acad. bulg. Sci., 65, 2012, No 12,

1731–1740.
[15] Koprinkova-Hristova P., L. Doukovska, S. Beloreshki. XIX Int. Symposium

PCPPS Proc., 2011, 25–28.
[16] Balabanov T., P. Koprinkova-Hristova, L. Doukovska, M. Hadjiski,

S. Beloreshki. INISTA Proc., 2011, 410–414.
[17] Koprinkova-Hristova P., M. Hadjiski, L. Doukovska, S. Beloreshki. JET,

57, 2011, No 3, 401–406.
[18] Hadjiski M., L. Doukovska, P. Koprinkova-Hristova. IEEE-IS’12 Proc.,

2012, 341–346.
[19] Nikov V., P. Koprinkova-Hristova, L. Doukovska. FedCSIS Proc., 2012,

139–143.

Institute of Information and Communication Technologies

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 2

1113 Sofia, Bulgaria

e-mail: hadjiski@uctm.edu, doukovska@iit.bas.bg

100 M. B. Hadjiski, L. A. Doukovska


