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Abstract

Norm-wise, mixed and component-wise condition numbers for the complex
matrix equation Xs

±AHXtA = Q, with s, t real numbers, are derived. On the
basis of the condition numbers, first order perturbation bounds are proposed
as well.
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1. Introduction. The condition numbers are local (asymptotic) bounds for
the perturbations in the solution as first order homogeneous functions of the
perturbations in the data. They are valid for infinitesimal perturbations in the
data and have relatively simple derivation and easy computation. Beside its
independent use, the condition numbers are involved in the derivation of local
perturbation bounds.

The measure of the sensitivity, in terms of the relative perturbations, is
preferable for problems with data widely different in their magnitude. When the
perturbations in the components of the data and/or the unknown matrix differ
significantly, or/and if the input data are badly scaled or sparse, the component-
wise perturbation analysis gives much tighter and revealing bounds than the
norm-wise perturbation analysis.

In this paper, we apply the theory of norm-wise and component-wise pertur-
bation analysis to derive norm-wise, mixed and component-wise condition num-
bers to the matrix equation

(1) Xs
± AHXtA = Q,
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where A is a nonsingular n × n complex matrix and Q is an Hermitian positive
definite matrix. AH stands for the conjugate transpose of A and both s and t are
real numbers.

This paper is a sequel to [1], where the existence of solution and norm-wise
perturbation analysis of equation (1) are considered. For norm-wise perturbation
bounds to some particular cases of (1) see [2–7,16] and the references therein.
Comparison analysis of the effectiveness and the reliability of most of these bounds
is given in [8,9].

This paper is organized in 6 sections. In Section 2 definitions of the norm-
wise, the mixed and the component-wise condition numbers are given. Section
3 is devoted to the first-order perturbation analysis of equation (1). Norm-wise
absolute and relative condition numbers, as well as mixed and component-wise
condition numbers of equation (1), are derived in Section 4. First order pertur-
bation bounds for the solution of equation (1) are formulated in terms of the
condition numbers proposed. In Section 5, the results are illustrated by a numer-
ical example. Section 6 contains our conclusions.

2. Preliminary definitions and notations. We adopt the following no-
tations: C

n×n and R
n×n are the sets of n× n complex and real matrices, respec-

tively; A⊤ is the transpose of A; A ⊗ B = (aijB) is the Kronecker product of
A and B; vec(A) = [a⊤1 , a⊤2 , . . . , a⊤n ]⊤ is the vector representation of matrix A,
where A = [aij ] and a1, a2, . . . , an ∈ C

n are the columns of A; Pn2 ∈ R
n2

×n2
is

the so-called vec-permutation matrix, such that vec(Y ⊤) = Pn2vec(Y ) for each
Y ∈ C

n×n; ∆ = ‖δX‖+‖δA‖+‖δQ‖; x � y is a partial order relation if y−x ∈ K,
K is a nonnegative cone; ‖.‖2 and ‖.‖F are the spectral and the Frobenius matrix
norms, respectively, ‖.‖ is a unitary invariant norm such as the spectral norm ‖·‖2

or the Frobenius norm ‖ · ‖F. The notation ’:=’ stands for ’equal by definition’.
For our purposes, the following expressions of the norm-wise, the mixed and

the component-wise condition numbers are used. For their definition and deriva-
tion, refer to [10].

Definition 1. For a given problem X = Φ(B) with data B := B0 + ıB1 ∈

C
n×n (ı2 = −1), unknown matrix X := X0 + ıX1 ∈ C

n×n and perturbations in

the data expressed by δB := δB0 + ıδB1 ∈ C
n×n, the finite quantity

K(B) := lim
β→0

sup

{

‖Φ(B + δB) − Φ(B)‖

‖δB)‖
: δB 6= 0, ‖δB‖ ≤ β

}

(2)

is the absolute norm-wise condition number and the quantity

k(B) := K(B)
‖B‖

‖X‖
= K(B)

‖B‖

‖Φ(B))‖
(3)

is the relative norm-wise condition number of problem (Φ, B). On the basis of the

norm-wise condition numbers local perturbation bounds for the solution X can be

derived.
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Denote by x = ϕ(b) the real vectorized embedding of the problem X = Φ(B),

where ϕ := (vec ◦ Φ)R, z := vec(Z)R =

[

vec(Z0)
vec(Z1)

]

∈ R
2n2

for Z = Z0 + ıZ1 ∈

C
n×n, Z0, Z1 ∈ R

n×n and Z stands for X,B ∈ C
n×n. The realification of the vec-

torized transformation of the problem (Φ, B) is imposed to assure differentiability

of (vec ◦ Φ).
Definition 2. For a given problem X = Φ(B) with vectorized embedding

x = ϕ(b), if the derivative ϕ′(b) of ϕ at b exists, then the quantity

k̂(b) =
‖ϕ′(b)diag(b1, . . . , b2n2)‖∞

‖x‖∞
=

‖|ϕ′(b)| |b|‖∞
‖x‖∞

(4)

≤ k(b) =
ϕ′(b)‖∞‖b‖∞

‖x‖∞

is the mixed relative condition number, where k(b) is the standard relative condi-

tion number (3) from Definition 1, taken with respect to the infinity norm ‖.‖∞.

If also the solution x has no zero components, the quantity

k̃(b) := ‖diag(1/x1, . . . , 1/x2n2)ϕ′(b)diag(b1, . . . , b2n2)‖∞(5)

is the relative component-wise condition number.

3. First order perturbation analysis. Denote by S := (A, Q) ∈

C
n×n

×C
n×n the collection of matrix coefficients of equation (1). Let S ∈ C

n×n
×

C
n×n, such that for S ∈ S equation (1) has a solution X ∈ C

n×n
+ . The existence

of a positive definite solution to equation (1) is discussed in [1]. Thus, a certain
subset of S is described.

Suppose that S varies over an open subset S
o of S. In this case X = Φ(S),

where the map Φ : So
→ C

n×n
+ is Fréchet pseudo-differentiable [10].

Assume that the coefficients A, Q of equation (1) are slightly perturbed by
δA, δQ, so as the perturbed equation

F (X + δX, S + δS) := (X + δX)s(6)

± (A + δA)H(X + δX)t(A + δA) − Q − δQ = 0

has solution X + δX in the neighbourhood of the unperturbed solution X. Sub-
tracting the unperturbed equation (1) from the perturbed equation (6) and drop-
ping the second and higher-order terms, we get

FX(X,S)(δX) ≈ −FQ(X,S)(δQ) − FA(X,S)(δA).(7)

Here FQ(X,S)(Z) := −Z is the partial Fréchet derivative of (6) in Q, calculated
at the point (X,S). The term FX(X,S)(Z) := F(s,X)(Z) ± AH

F(t,X)(Z)A is
the partial Fréchet derivative of (6) in X at the point (X,S), where F(p,X)(Z),
p = s, t denotes the Fréchet derivative of the function X → Xp, p ∈ R at the point
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X: (X + Y )p = F(p,X)(Y ) + O(‖Y ‖
2), Y → 0. Expressions of the derivatives

F(p,X) and of their matrices Lp := Mat{F(p,X)} for different value of p ∈ R:
p = ±r, p = ±1/l, p = ±r/l, r, l = 1, 2, . . . , are listed on Table 1. The term
FA(X,S)(Z) := ±AHXtZ ±ZHXtA is the Fréchet pseudo derivative of (6) in A.
The operator FA(X,S) is additive but not homogeneous. This implies to apply
the technique of additive operators [10].

T a b l e 1

Expressions of the derivatives F(p, X) and their matrices Lp [
11,12

]

p F(p, X)(Y ) Lp

r

r−1X
k=0

Xr−1−kY Xk

r−1X
k=0

(Xk
)
⊤

⊗ Xr−1−k

−r −

r−1X
k=0

X−1−kY Xk−r
−

r−1X
k=0

(Xk−r
)
⊤

⊗ X−(1+k)

1/l F
−1

(l, X1/l
)(Y )

 
l−1X
k=0

(Xk/l
)
⊤

⊗ X(l−1−k)/l

!−1

−1/l F
−1

(−l,X−1/l
)(Y )

 
−

l−1X
k=0

(X(k−l)/l
)
⊤

⊗ X−(1+k)/l

!−1

r/l F(r, X1/l
) ◦ F

−1
(l, x1/l

)(Y )

 
r−1X
k=0

(Xk/l
)
⊤

⊗ X(r−1−k)/l

!
L1/l

−r/l F(−1, Xr/l
) ◦ F(r/l, X)(Y ) −

�
(X−r/l

)
⊤

⊗ X−r/l
�

Lr/l

Suppose that the operator FX(X,S) is invertible, i.e. its matrix L :=
Mat{FX (X,S)} = Ls ± (A⊤

⊗ AH)Lt is non-singular. For the perturbation δX

in the solution X we obtain (7)

δX ≈ −F−1
X ◦ FQ(δQ) − F−1

X ◦ FA(δA),

or in a vector form

vec(δX) ≈ WQvec(δQ) + (WA + WĀ)vec(δA).(8)

Here WZ := −L−1LZ = WZ0 + ıWZ1 ∈ C
n2

×n2
, ı2 = −1, where LZ are the ma-

trices of the operators FZ(X,S) for Z = Q,A, Ā: LQ := Mat{FQ(X,S)} = −In2,
LA := Mat{FA(X,S)} = I ⊗ AHXt and LĀ := Mat{FĀ(X,S)} = ((XtA)⊤ ⊗

I)Pn2 .
Applying the technique [10] for additive complex operators in expression (8),

we obtain its realification

vec(δX)R ≈ WR

Q vec(δQ)R + ΘAvec(δA)R,(9)

or

vX ≈ Θ

[

vQ

vA

]

,(10)
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where

vZ := vec(δZ)R =

[

vec(δZ0)
vec(δZ1)

]

∈ R
2n2

,

for δZ = δZ0 + ıδZ1 and Z = X,Q,A,

Θ :=
[

ΘQ ΘA

]

∈ R
2n2

×4n2
,

ΘQ := WR

Q =

[

WQ0 −WQ1

WQ1 WQ0

]

∈ R
2n2

×2n2
,(11)

ΘA := ΘA(WA,WĀ) =

[

WA0 + WĀ0 WĀ1 − WA1

WA1 + WĀ1 WA0 − WĀ0

]

∈ R
2n2

×2n2
.

4. Condition numbers. 4.1. Norm-wise condition numbers. Denote
z := ‖Z‖F, δZ := ‖δZ‖F/z, for Z = A,Q and δX := ‖δX‖F/‖X‖F.

Theorem 1. For the solution X of equation (1), with data matrices satisfy-

ing (A,Q) ∈ S
0, the following norm-wise absolute and relative condition numbers

are valid:

absolute condition numbers

KZ := ‖ΘZ‖2, Z = A,Q,(12)

relative condition numbers

kz :=
KZ‖Z‖2

‖X‖2
, Z = A,Q,(13)

k1 := lim
ε→0

sup

{

δX

ε
:

√

δ2
Q + δ2

A ≤ ε

}

=
‖
[

qΘQ aΘA

]

‖2

‖X‖F
.(14)

Proof. Expressions (12) and (13) for the absolute and the relative norm-wise
condition numbers follow directly from definitions (2), (3) and expression (9).

For the proof of k1 (14) rewrite expression (10) as

(15) vX ≈
[

qΘQ aΘA

]

[

vQ/q

vA/a

]

and take the spectral norm of both sides of (15). One obtains

δX ≤
1

‖X‖F
‖
[

qΘQ aΘA

]

‖2

∥

∥

∥

∥

[

vQ/q

vA/a

]
∥

∥

∥

∥

2

=
1

‖X‖F

∥

∥

[

qΘQ aΘA

]
∥

∥

2

√

δ2
A + δ2

Q.

Hence, (14) holds. �

As function F (X,S) is Lipschitzian at S, the heuristic rule [13] may be ap-
plied to estimate the actual error in the computed solution for computing en-
vironment with rounding unit macheps: when macheps k(S) < 1, then about
− log10(macheps k(S)) are the true decimal digits in the result.
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The local estimate est(δ) from [1] in terms of the norm-wise condition num-
bers of Theorem 1 is

(16) δX ≤ est(δ) := min{est2(δ), est3(δ)},

where δ :=
[

δQ δA

]

∈ R
2
+ is the vector of relative data perturbations in Frobe-

nius norm and

est2(δ) := k1

√

δ2
Q + δ2

A,

est3(δ) :=

√

k2
Qδ2

Q + k2
Aδ2

A +
2l

‖X‖
2
F

,

l := q2
‖Θ⊤

QΘQ‖2δ
2
Q + aq(‖Θ⊤

QΘA‖2 + ‖Θ⊤

AΘQ‖2)δQδA + a2
‖Θ⊤

AΘA‖2δ
2
A.

4.2. Mixed and component-wise condition numbers. Denote σ :=
[

vec(δQ)R

vec(δA)R

]

= [σij ], i, j = 1, 2, . . . , 2n2. The concepts of the component-wise

perturbation analysis are developed in [10,14, 15].
Theorem 2. Let S ∈ S

0.

1. Let x 6= 0. According to Definition 2, the mixed condition number (4) for

equation (1) is

k̂(σ) :=
‖|Θ| |σ|‖

∞

‖x‖∞
.(17)

2. If xj 6= 0, for j = 1, 2, . . . , 2n2, then the component-wise condition number

(18) of equation (1), according to Definition 2 is

k̃(σ) := ‖(|Θ| |σ|) ./|x|‖
∞

,(18)

where Θ is defined in (11).
Proof. The mixed condition number (17) and the component-wise condition

number (18) follow directly from expression (9), (11). �

Let |δA0| � ε0|A0|, |δA1| � ε1|A1|, . . . , |δAk| � εk|Ak| and ε := min{ε0, ε1,

ε2, . . . , εk}. Then for equation (1) the following mixed and component-wise per-
turbation bounds, based on the mixed and the component-wise condition numbers
from Theorem 2, are valid

‖vec(δX)‖∞/‖x‖∞ ≤ ε k̂(σ) + O(ε), ε → 0,(19)

‖|vec(δX)|./|x|‖∞ ≤ ε k̃(σ) + O(ε), ε → 0.(20)

The component-wise perturbation bound is an estimate of the sensitivity of the
elements of the solution to perturbations in the elements of the data. Its use is
convenient when the elements of the data vary in a special way, e.g., when some
of them remain constant.
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5. Numerical example. Consider equation Xs
−A⊤XtA = Q, with s = 1,

t = 3/4. Let A =
d

‖A0‖
A0, where d =

19

20
− 10−2 and A0 =













2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2













;

X =













2.5 1 1 1 1
1 2.5 1 1 1
1 1 2.5 1 1
1 1 1 2.5 1
1 1 1 1 2.5













and Q = Xs
−A⊤XtA. Consider the perturbed

matrix equation (X + δX) − (A + δA)⊤(X + δX)3/4(A + δA) = Q + δQ, where

δA = 10−j C∗ + C

‖C∗ + C‖
for j = 4, 6, 8, 10, C is a random matrix generated by the

function randn of MATLAB,

δX = 10−j













1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1













and

δQ = (X + δX) + (A + δA)⊤(X + δX)3/4(A + δA) − Q.

This example is taken from [2]. On Table 2 are given the results obtained for
the relative norm-wise condition numbers kA and kQ (13), the overall relative

norm-wise condition number k1 (14), the mixed condition number k̂(σ) (17), the

component-wise condition number k̃(σ) (18) and the ratio
est(δ)

δx
of the local

estimate est(δ) (16), based on the norm-wise condition numbers to the estimated

T a b l e 2

Numerical example

Bound j = 4 j = 6 j = 8 j = 10

kA 0.9649 0.9649 0.9649 0.9649

kQ 0.8731 0.8731 0.8731 0.8731

k̂(σ) 4.0301 4.0301 4.0299 4.2729

k̃(σ) 4.0301 4.0301 4.0299 4.7428

k1 1.0701 1.0700 1.0700 1.0700

est(δ)/δx 1.6308 1.6306 1.6306 1.6306
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value–the relative perturbations δX in the solution X. The numerical example
demonstrates the effectiveness of the bounds proposed.

6. Conclusions. In this paper, explicit expressions for the norm-wise, mixed
and component-wise condition numbers of the complex matrix equation (1) are
obtained. First order bounds for the perturbations in the computed solution are
proposed, as well. The condition numbers and the local perturbation bounds
proposed allow easy computable and fast estimate of the accuracy of the com-
puted solution. The effectiveness of the bounds proposed is demonstrated with a
numerical example.
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