PARACOMPACTNESS, SELECTIONS AND FACTORIZATION PRINCIPLES

Mitrofan Choban, Ekaterina Mihaylova*, Stoyan Nedev**, Dimitrina Stavrova**

(Submitted by Corresponding Member J. Revalski on September 25, 2012)

Abstract

Factorization principles for set-valued mappings are obtained. These principles are applied in theorems for selections of set-valued mappings from paracompact spaces.

Key words: selection, paracompact space, factorization

2000 Mathematics Subject Classification: 54C60, 54C65, 54D20, 54D30

1. Introduction. All considered spaces are assumed to be T_0-spaces. Our terminology comes, as a rule, from [13,17,21]. In the present paper we continue the investigations begun in [9-12].

A topological space X is called paracompact if X is Hausdorff and every open cover of X has a locally finite open refinement.

The cardinal number $l(X) = \min\{m : \text{every open cover of } X \text{ has an open refinement of cardinality } \leq m\}$ is the Lindelöf number of X.

Let X and Y be non-empty topological spaces. A set-valued mapping $\theta : X \to Y$ assigns to every $x \in X$ a non-empty subset $\theta(x)$ of Y. If $\phi, \psi : X \to Y$ are set-valued mappings and $\phi(x) \subseteq \psi(x)$ for every $x \in X$, then ϕ is called a selection of ψ.

Let $\theta : X \to Y$ be a set-valued mapping and let $A \subseteq X$ and $B \subseteq Y$. The set $\theta^{-1}(B) = \{x \in X : \theta(x) \cap B \neq \emptyset\}$ is the inverse image of the set B, $\theta(A) = \bigcup\{\theta(x) : x \in A\}$ is the image of the set A and $\theta^{n+1}(A) = \theta(\theta^{n}(A))$ is the $n+1$-image of the set A. The set $\theta^\infty(A) = \bigcup\{\theta^n(A) : n \in \mathbb{N}\}$ is the largest image of the set A.

A set-valued mapping $\theta : X \to Y$ is called lower (upper) semi-continuous if for every open (closed) subset H of Y the set $\theta^{-1}(H)$ is open (closed) in X.

A set-valued mapping $\theta : X \to Y$ is called perfect if it is an upper semicontinuous compact-valued mapping, $\theta^{-1}(y)$ is compact for every $y \in Y$ and $\theta : X \to \theta(X)$ is a closed mapping.
Let X and Y be topological spaces and $\theta : X \to Y$ be a set-valued mapping. A weak r-factorization (weak right-factorization) for θ is a triple (Z, g, ϕ), where $g : Z \to Y$ is a continuous single-valued mapping from the space Z into Y and $\phi : X \to Z$ is a set-valued mapping such that $g(\phi(x)) \subseteq \theta(x)$ for every $x \in X$. We conserve the word factorization (right-factorization) for θ when $g(\phi(x)) = \theta(x)$ for every $x \in X$. If ϕ is a single-valued continuous mapping (respectively, lower or upper semi-continuous), then the weak r-factorization (Z, g, ϕ) is called single-valued (respectively, lower or upper semi-continuous) weak r-factorization. Note that every weak r-factorization (Z, g, ϕ) valued (respectively, lower or upper semi-continuous), then the weak r-factorization (Z, g, ϕ) is a lower semi-continuous mapping ϕ.

The set-valued factorizations (weak factorizations) from 19,20, one may name it left-factorizations (respectively weak left-factorizations). Recall that a factorization (weak factorization) for θ is a triple (Z, g, ϕ), where $g : X \to Z$ is a continuous single-valued mapping from the space X into Z and $\phi : Z \to Y$ is a set-valued mapping such that $\phi(g(x)) = \theta(x)$ (respectively $\phi(g(x)) \subseteq \theta(x)$) for every $x \in X$ (see 19,20).

The concept of factorization of single-valued mappings was introduced by S. Mardešić in 16. The case of set-valued mappings was examined in 19,20.

Our notion of the weak r-factorization is distinct from the weak factorization. Really, let $\theta : X \to Y$ be a single-valued continuous mapping. If (Z, g, ϕ) is a weak factorization for θ, then ϕ is a single-valued mapping. In this case we have the Mardešić's 16 factorization. Let $f : Z \to Y$ be a single-valued mapping of the space Z onto the space Y. We put $\psi(x) = f^{-1}(\theta(x))$ for any $x \in X$. Then (Z, f, ψ) is a weak r-factorization for θ. Obviously that (Z, f, ψ) is a weak factorization for θ if and only if the mapping f is one-to-one.

The notion of r-factorization implicitly was used in 9 and 7.

For every finite-dimensional (infinite-dimensional) normal space X there exists a single-valued continuous mapping $\theta : X \to Y$ into a finite-dimensional (infinite-dimensional) separable metric space Y such that for every single-valued weak r-factorization (Z, g, ϕ) it follows that $\dim Z \geq \dim X$. Really, let $\dim X \geq n$. Then there exists a finite open cover $\gamma = \{U_1, U_2, \ldots, U_m\}$ such that for any open refinement ξ of γ we have $\ord(\xi) = \max\{\vert A \vert : A \subseteq \{1, 2, \ldots, m\}, \cap \{U_i : i \in A \} \neq \emptyset\} \geq n + 1$. Fix the continuous functions $\{f_i : X \to I = [0, 1] : i \leq m\}$ such that $X \setminus U_i \subseteq f_i^{-1}(0)$ for every $i \leq m$ and $\Sigma\{f_i(x) : i \leq m\} = 1$ for every $x \in X$. Then $\theta = \theta_n : X \to Y_n = \theta_n(X) \subseteq I^m$, where $\theta_n(x) = (f_1(x), f_2(x), \ldots, f_m(x))$ for each $x \in X$, is the desired mapping for the case $\dim X \geq n$. If $\dim X = \infty$, then the mapping θ is the diagonal product of the mappings θ_n. This fact is not true for set-valued lower (neither for upper) semi-continuous weak r-factorizations.

For set-valued mappings there exist some similar results. Denote by $\ord(\phi) = \sup\{\tau : \tau < \vert \phi(x)\vert \}$ it for some $x \in X$ the order of the set-valued mapping $\phi : X \to Y$. For every normal space X and any natural number $n \leq \dim X$ there exist a lower semi-continuous mapping $\varphi : X \to Y$ and an upper semi-continuous mapping $\psi : X \to Y$ into a finite discrete space Y such that ψ is a selection for...
φ and for every lower or upper semi-continuous factorization \((Z, g, \phi)\) of \(φ\) it follows \(n \leq \text{ord}(φ)\).

If \(θ : X → Y\) is an upper semi-continuous compact-valued mapping of a regular space \(X\) into a regular space \(Y\), then \(Gr(θ)\) is closed in \(X × Y\) and there exists a closed subset \(Z ⊆ Gr(θ)\) such that the projection \(g : Z → X\) is a perfect irreducible mapping (see [13]). The mapping \(g\) is a homeomorphism if and only if \(X\) is extremely disconnected. In this case \(Z\) is the graph of a single-valued continuous selection of \(θ\) (see [15]).

2. Factorization principles. A set-valued mapping with a property \(Q\) is called a \(Q\)-mapping. A property \(Q\) of set-valued mappings is called a perfect property if for every set-valued \(Q\)-mapping \(θ : X → Y\) from a space \(X\) into a metrizable space \(Y\), every perfect mapping \(h : Z → Y\) from a metrizable space \(Z\) onto \(Y\) and every subspace \(H\) of \(Z\), such that \(h(H) = Y\), the mapping \(φ : X → Z\), where \(φ(x) = cl_Z(H \cap h^{-1}(θ(x)))\) for every \(x \in X\), is a \(Q\)-mapping.

Let \(τ\) be an infinite cardinal number. A mapping \(θ : X → Y\) is called \(τ\)-dense if \(l(θ(θ^{-1}(H))) ≤ τ\) for every \(H ⊆ Y\) such that \(l(H) ≤ τ\).

The property of a set-valued mapping to be \(τ\)-dense is a perfect property.

There is a very long list of classes of topological spaces characterized in terms of special selections of lower set-valued mappings into completely metrizable spaces (see for example [3–5, 7, 9–12, 14, 17–19, 21]).

The following principles are useful tools for the investigation of selection problems.

Theorems 1 (2) U-factorization principle (L-factorization principle). For a space \(X\) and a perfect property \(Q\) of set-valued mappings the following assertions are equivalent:

1. For every lower semi-continuous mapping \(θ : X → Y\) into a completely metrizable \(Y\), there exist a completely metrizable space \(Z\), a continuous single-valued mapping \(g : Z → Y\) and an upper semi-continuous mapping \(ψ : X → Z\) with the property \(Q\) such that \(g(ψ(x)) ⊆ \theta(x)\) for every \(x \in X\) (a lower semi-continuous mapping \(φ : X → Z\) with the property \(Q\) such that \(g(φ(x)) ⊆ \theta(x)\) for every \(x \in X\)).

2. For every lower semi-continuous mapping \(θ : X → Y\) into a completely metrizable \(Y\) there exist a completely metrizable zero-dimensional space \(Z\), a continuous single-valued mapping \(g : Z → Y\) and an upper semi-continuous mapping \(ψ : X → Z\) with the property \(Q\) such that \(g(ψ(x)) ⊆ \theta(x)\) for every \(x \in X\) (a lower semi-continuous mapping \(φ : X → Z\) with the property \(Q\) such that \(g(φ(x)) ⊆ \theta(x)\) for every \(x \in X\)).

Theorem 3 (M-factorization principle). For a space \(X\) and a perfect property \(Q\) of set-valued mappings the following assertions are equivalent:

1. For every lower semi-continuous mapping \(θ : X → Y\) into a completely metrizable \(Y\) there exist a completely metrizable space \(Z\), a continuous single-valued mapping \(g : Z → Y\), a lower semi-continuous mapping \(φ : X → Z\) and
an upper semi-continuous mapping $\psi : X \to Z$ both ϕ and ψ with the property Q

such that $\phi(x) \subseteq \psi(x)$ and $g(\psi(x)) \subseteq \theta(x)$ for every $x \in X$.

2. For every lower semi-continuous mapping $\theta : X \to Y$ into a completely metrizable Y there exist a completely metrizable zero-dimensional space Z, a continuous single-valued mapping $g : Z \to Y$, a lower semi-continuous mapping $\phi : X \to Z$ and an upper semi-continuous mapping $\psi : X \to Z$ both with the property Q such that $\phi(x) \subseteq \psi(x)$ and $g(\psi(x)) \subseteq \theta(x)$ for every $x \in X$.

Proof of the three factorization principles. Let $\phi_1, \psi_1 : X \to Z_1$ be two mappings with property Q from X into a completely metrizable space Z_1 and $h : Z_1 \to Y$ be a single-valued continuous mapping. There exist a completely metrizable zero-dimensional space Z, a subset H of Z, a perfect mapping $f : Z \to Z_1$ such that $f(H) = Z_1$ and $f \upharpoonright H : H \to Z_1$ is an open mapping (see \cite{2,8}). Put $\psi(x) = f^{-1}(\psi_1(x))$ and $\phi(x) = \text{cl}_Z(H \cap f^{-1}(\phi_1(x)))$ for $x \in X$ and $g(z) = h(f(z))$ for every $z \in Z$. Then $g : Z \to Y$ is a single-valued continuous mapping and $\phi, \psi : X \to Z$ are set-valued mappings with the property Q. If ψ_1 is upper semi-continuous, then ψ is upper semi-continuous, too. If ϕ_1 is lower semi-continuous, then ϕ is lower semi-continuous, too. This proves the implication $1 \Rightarrow 2$ of the factorization principles. The implication $2 \Rightarrow 1$ is obvious for any factorization principle. □

The construction from the proof above may be used in the proof of the following:

Theorem 4. For a T_0-space X the following assertions are equivalent:

1. X is a paracompact space.

2. For every lower semi-continuous closed-valued mapping $\theta : X \to Y$ into a completely metrizable Y there exist an upper semi-continuous mapping $\psi : X \to Y$ such that $\psi(x) \subseteq \theta(x)$ for every $x \in X$.

3. For every lower semi-continuous closed-valued mapping $\theta : X \to Y$ into a completely metrizable Y there exist a completely metrizable zero-dimensional space Z, a continuous single-valued mapping $g : Z \to Y$, a lower semi-continuous compact-valued mapping $\phi : X \to Z$ and an upper semi-continuous compact-valued mapping $\psi : X \to Z$ such that $\phi(x) \subseteq \psi(x)$, $\psi^\infty(x)$ is a separable space and $g(\psi(x)) \subseteq \theta(x)$ for every $x \in X$.

Proof. From the factorization theorems from \cite{19,20} it follows that there exist a complete metric space Z_1, a continuous single-valued mapping $f : X \to Z_1$ and a lower semi-continuous compact-valued mapping $\lambda : Z_1 \to Y$ such that $\lambda(f(x)) \subseteq \theta(x)$ for any $x \in X$.

There exist a completely metrizable zero-dimensional space Z, a subset H of Z and a perfect mapping $h : Z \to Z_1$ such that $h(H) = Z_1$ and $h \upharpoonright H : H \to Z_1$ is an open compact mapping (see \cite{2,8}). For the lower semi-continuous compact-valued mapping $\theta_1 : Z \to Y$ where $\theta_1(z) = \lambda(h(z))$ for every $z \in Z$, there exists a single-valued continuous selection $g : Z \to Y$. Put $\psi(x) = h^{-1}(f(x))$ and $\varphi(x) = H \cap \psi(x)$ for every $x \in X$. By construction $\psi^\infty(x) = \psi(x)$ is compact. □
3. On paracompact p-spaces. A space X is called a paracompact p-space if it is Hausdorff and there exists a perfect single-valued mapping $\theta : X \to Y$ onto some metrizable space Y (see [1]).

Theorem 5. For a T_0-space X the following assertions are equivalent:
1. X is a paracompact p-space.
2. For every lower semi-continuous mapping $\theta : X \to Y$ there exist a completely metrizable space Z, a continuous single-valued mapping $g : Z \to Y$, a lower semi-continuous compact-valued mapping $\phi : X \to Z$ and a perfect set-valued mapping $\psi : X \to Z$ such that ϕ and ψ are τ-dense mappings for every infinite cardinal number τ, $\phi(x) \subseteq \psi(x)$ and $g(\psi(x)) \subseteq \theta(x)$ for every $x \in X$.
3. For every lower semi-continuous mapping $\theta : X \to Y$ into a completely metrizable Y there exist a completely metrizable zero-dimensional space Z, a continuous single-valued mapping $g : Z \to Y$, a lower semi-continuous compact-valued mapping $\phi : X \to Z$ and a perfect set-valued mapping $\psi : X \to Z$ such that ϕ and ψ are τ-dense mappings for every infinite cardinal number τ, $\phi(x) \subseteq \psi(x)$ and $g(\psi(x)) \subseteq \theta(x)$ for every $x \in X$.

Proof. Implications $2 \Rightarrow 3 \Rightarrow 2$ follow from the M-factorizations principles. Implication $2 \Rightarrow 1$ is obvious. Let $\theta : X \to Y$ be a lower semi-continuous mapping from a paracompact p-space X into a completely metrizable space Y. By virtue of Michael’s selection theorem [18], there exist a lower semi-continuous compact-valued mapping $\phi_1 : X \to Y$ and an upper semi-continuous compact-valued mapping $\psi_1 : X \to Y$ such that $\phi_1(x) \subseteq \psi_1(x) \subseteq \theta(x)$ for every $x \in X$. There exist a completely metrizable space S, a subspace S_1 of S and a perfect single-valued mapping $f : X \to S_1$ from X onto S_1. Let $\phi(x) = \phi_1(x) \times \{f(x)\}$ and $\psi(x) = \psi_1(x) \times \{f(x)\}$ for every $x \in X$. Then $\phi : X \to Y \times S$ is lower semi-continuous and $\psi : X \to Y \times S$ is a perfect set-valued mapping. Consider the projection $g : Y \times S \to Y$. Then $\phi(x) \subseteq \psi(x)$ and $g(\psi(x)) = \psi_1(x) \subseteq \theta(x)$ for every $x \in X$.

4. On strongly paracompact spaces. Let \mathcal{P} be a property of topological spaces. The space X has property $\text{loc} \mathcal{P}$ if for any point $x \in X$ there exist an open subset U of X and a subset H of X such that $x \in U \subseteq H \subseteq \text{cl}_X U$ and H has the property \mathcal{P}. In particular, $\text{loc}(X) \leq \tau$ if there exists an open cover γ of X such that $l(U) \leq \tau$ for any $U \in \gamma$.

Theorem 6. For a T_0-space X the following are equivalent:
1. X is strongly paracompact.
2. For every infinite cardinal number τ and a lower semi-continuous mapping $\theta : X \to Y$ into a completely metrizable Y with $\text{loc}(Y) \leq \tau$ there exist a completely metrizable space Z, an open continuous single-valued mapping $g : Z \to Y$ onto Y, a lower semi-continuous τ-dense mapping $\phi : X \to Z$ and an upper semi-continuous compact-valued τ-dense mapping $\psi : X \to Z$ such that $\text{loc}(Z) \leq \tau$, $\phi(x) \subseteq \psi(x)$ and $g(\psi(x)) \subseteq \theta(x)$ for every $x \in X$.

3. For every infinite cardinal number τ and a lower semi-continuous mapping $\theta : X \to Y$ into a completely metrizable Y with $\text{loc}(Y) \leq \tau$ there exist a zero-dimensional completely metrizable space Z, an open continuous single-valued mapping $g : Z \to Y$ onto Y, a lower semi-continuous τ-dense mapping $\phi : X \to Z$ and an upper semi-continuous compact-valued τ-dense mapping $\psi : X \to Z$ such that $\text{loc}(Z) \leq \tau$, $\phi(x) \subseteq \psi(x)$ and $g(\psi(x)) \subseteq \theta(x)$ for every $x \in X$.

4. The space X is regular and for every infinite cardinal number τ and a lower semi-continuous mapping $\theta : X \to Y$ into a completely metrizable Y with $\text{loc}(Y) \leq \tau$ there exist a completely metrizable space Z, an open continuous single-valued mapping $g : Z \to Y$ onto Y, a lower semi-continuous τ-dense mapping $\phi : X \to Z$ such that $\text{loc}(Z) \leq \tau$ and $g(\phi(x)) \subseteq \theta(x)$ for every $x \in X$.

5. For every infinite cardinal number τ and a lower semi-continuous mapping $\theta : X \to Y$ into a completely metrizable Y with $\text{loc}(Y) \leq \tau$ there exist a completely metrizable space Z, an open continuous single-valued mapping $g : Z \to Y$ onto Y an upper semi-continuous τ-dense mapping $\psi : X \to Z$ such that $\text{loc}(Z) \leq \tau$ and $g(\psi(x)) \subseteq \theta(x)$ for every $x \in X$.

Proof. Implications 3 \Rightarrow 4 and 3 \Rightarrow 5 are obvious. Implication 2 \Rightarrow 3 follows from M-factorization principle.

Let X be a strongly paracompact space, $\theta : X \to Y$ be a lower semi-continuous mapping into a complete metrizable, τ be an infinite cardinal number and $\text{loc}(Y) \leq \tau$. Put $\gamma = \{V : V$ is open in Y and $l(V) \leq \tau\}$. Obviously $Y = \bigcup \gamma$. There exists an open star-finite cover $\xi = \{U_\alpha : \alpha \in A\}$ of the space X such that for every $\alpha \in A$ there exists $V_\alpha \in \gamma$ with $U_\alpha \subseteq \theta^{-1}(V_\alpha)$. One can assume that $Y = \bigcup\{V_\alpha : \alpha \in A\}$. Denote by Z the discrete sum $\bigoplus\{V_\alpha \times \{\alpha\} : \alpha \in A\}$. Put $g(y, \alpha) = y$ for every $y \in V_\alpha$ and $\alpha \in A$. Then $g : Z \to Y$ is an open continuous single-valued mapping and the space Z is completely metrizable.

For every $x \in X$ put $\theta_1(x) = \bigcup\{V_\alpha \cap \theta(x) \times \{\alpha\} : x \in U_\alpha, \alpha \in A\}$. Then $\theta_1 : X \to Z$ is a lower semi-continuous mapping and $g(\theta_1(x)) \subseteq \theta(x)$ for every $x \in X$. By construction, $\text{loc}(Z) \leq \tau$.

By virtue of Michael’s selection theorem [18], there exist a lower semi-continuous compact-valued mapping $\phi : X \to Z$ and an upper semi-continuous compact-valued mapping $\psi : X \to Z$ such that $\phi(x) \subseteq \psi(x) \subseteq \theta_1(x)$ for every $x \in X$. There exists a decomposition $\{A_\beta : \beta \in B\}$ of A such that $A = \bigcup\{A_\beta : \beta \in B\}$, A_β is finite or countable for every $\beta \in B$ and if $\beta, \mu \in B$ and $X_\beta = \bigcup\{U_\alpha : \alpha \in A_\beta\}$ then $X_\beta = X_\mu$, or $X_\beta \cap X_\mu = \emptyset$.

Let $\beta \in B$. Put $Z_\beta = \bigcup\{V_\alpha \times \{\alpha\} : \alpha \in A_\beta\}$. Then $l(Z_\beta) \leq \tau$, $X_\beta = \phi^{-1}(Z_\beta) = \psi^{-1}(Z_\beta)$ and $\phi(X_\beta) \subseteq \psi(X_\beta) \subseteq Z_\beta$. Hence $\phi^\infty(x) \subseteq \psi^\infty(x) \subseteq Z_\beta$ for every $x \in X_\beta$. It follows that $l(\phi^\infty(x)) \leq \tau$ and $l(\psi^\infty(x)) \leq \tau$ for every $x \in X$.

Fix $H \subseteq Z$ with $l(H) \leq \tau$. Then $B(H) = \{\beta \in B : H \cap Z_\beta \neq \emptyset\}$ is a set of cardinality less then τ. Hence $l\bigcup\{Z_\beta : \beta \in B(H)\} \leq \tau$ and $\psi^{-1}(H) \subseteq \bigcup\{Z_\beta : \beta \in B(H)\}$. Therefore $l(\psi^{-1}(H)) \leq \tau$. Implication 1 \Rightarrow 2 is proved.

Suppose that $\xi = \{U_\alpha : \alpha \in Y\}$ is an open cover of X. Endow Y with the
Consider a completely metrizable space Z, a continuous single-valued mapping $g : Z \to Y$ and an ω-dense mapping $\varphi : X \to Z$ such that $g(\varphi(x)) \subseteq \theta(x)$ for every $x \in X$. The space Z is locally separable. Thus every subspace of Z is strongly paracompact. There exists a star-finite open cover $\gamma = \{W_\mu : \mu \in M\}$ such that for every $\mu \in M$ the space W_μ is separable and there exists $y(\mu) \in Y$ with $W_\mu \subseteq g^{-1}(y(\mu))$. Then $\varphi^{-1}(\text{cl}_ZW_\mu) \subseteq U_{y(\mu)}$ for every $\mu \in M$.

Let $V_\mu = \varphi^{-1}(W_\mu)$ and $H_\mu = \varphi^{-1}(\text{cl}_ZW_\mu)$. Since φ is τ-dense, the space $\varphi^\infty(H_\mu)$ is separable for every $\mu \in M$. In particular, $\{H_\mu : \mu \in M\}$ is a star-countable refinement of ξ.

Assume that the mapping φ is upper semi-continuous. Then $\xi' = \{H_\mu : \mu \in M\}$ is a conservative star-countable closed refinement of the cover ξ. Thus the space X is strongly paracompact (see [9]). Implication 5 \Rightarrow 1 is proved.

Assume that φ is lower semi-continuous and X is regular. Then $\{V_\mu : \mu \in M\}$ is an open star-countable refinement of ξ. Thus X is strongly paracompact. Implication 4 \Rightarrow 1 and the theorem are proved. \square

Remark 7. A set-valued mapping $\phi : X \to Z$ into a discrete space Z is ω-dense if and only if the set $\phi^2(x)$ is countable for every $x \in X$. Thus the characterization of strong paracompactness in [9] can be regarded as a corollary of Theorem 6.

Remark 8. The recent article [14] contains the uniform characterization of strong paracompactness. Theorem 6 is a topological characterization of strong paracompactness. Theorems 4 and 5 show that the following conditions are essential: $\text{loc}(Z) \leq \text{loc}(Y)$; the selection φ is $\text{loc}(Y)$-dense.

The method in the proof of Theorem 6 uses essentially the τ-density of the factorization.

Example 9. Let $I = [0, 1]$ and $I_t = [0, 1] \times \{t\}$ for every $t \in I$. Denote by Y the discrete sum $\bigoplus\{I_t : t \in I\} \bigoplus I$. Denote by X the space which underlying set is Y with the discrete topology on $\bigoplus\{I_t : t \in I\}$ and with the natural topology on the open-and-closed subspace I. Consider the mapping $\theta : X \to Y$ where $\theta(t) = \{t\}$ for $t \in I$, $\theta((x,t)) = \{(x,t)\}$ for $x \in I$ and $t > 0$ and $\theta((t,0)) = \{t, (t,0)\}$ for every $t \in I$. Then the mapping θ is continuous (i.e. lower and upper semi-continuous), compact-valued, $\phi^2(x) = \phi^\infty(x)$ and $|\phi^\infty(x)| \leq 2$ for every $x \in X$. The family $\gamma = \{I, I_t : t \in I\}$ is a discrete cover of Y and $\theta^{-1}(\gamma)$ is a locally finite open cover of X. But $\theta^{-1}(\gamma)$ is not star-finite. The set I is separable and the set $\theta(\theta^{-1}(I))$ is not separable (in both spaces X and Y). The mapping θ has a single-valued selection. \square

Acknowledgements. We would like to express our gratitude to the reviewer of the paper for his useful remarks.

REFERENCES

Department of Mathematics
Tiraspol State University
5, Iablochikin
MD 2069, Kishinev
Republic of Moldova
e-mail: mmchoban@gmail.com

*University of Architecture, Civil Engineering and Geodesy
1, Hr. Smirnenski Blvd
1046 Sofia, Bulgaria
e-mail: katiamih_fgs@uacg.bg

**Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 8
1113 Sofia, Bulgaria
e-mail: nedev@math.bas.bg

***Faculty of Mathematics and Informatics
Sofia University
5, J. Bourchier Str.
1164 Sofia, Bulgaria
e-mail: stavrova@fmi.uni-sofia.bg

170 M. Choban, E. Mihaylova, St. Nedev et al.