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Abstract

We consider numerical characteristics of varieties of Lie algebras over a
field of characteristic zero and their polynomial identities. Here we have con-
structed an infinite series of such varieties with different fractional exponents.
This extends the special cases known before.
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Let V be a variety of linear algebras over a field of zero characteristic and
let F (V) be its free algebra on a countable set X = {x1, x2, . . .}. If Pn(V) is
the vector subspace of F (V) consisting of the multilinear polynomials in the first
n variables, then the n-th codimension cn(V) of V is the dimension of Pn(V),
i.e., the dimension of the multilinear polynomials of degree n in the absolutely
free non-associative algebra modulo the polynomial identities satisfied by V. The
growth of the codimension sequence cn(V), n = 1, 2, . . . , is called the growth of
the variety V. If cn(V) is majorized by the exponent an for an appropriate a,
then there exist limits

LEXP(V) = lim inf
n→∞

n
√
cn(V), HEXP(V) = lim sup

n→∞
n
√
cn(V).

We shall call them the lower and upper exponents of the variety V, respectively.
If the limit of the sequence n

√
cn(V) exists, then we call it the exponent of V,

EXP(V) = LEXP(V) = HEXP(V).
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The symmetric group Sn acts on the space Pn(V) by permuting the indices of the
variables. If xi1 · · ·xin ∈ Pn(V) and p ∈ Sn, then p(xi1 · · ·xin) = xp(i1) · · ·xp(in),
and Pn(V) becomes an Sn-module. The character of the Sn-module Pn(V) is
decomposed into a linear combination of irreducible characters

(1) χ(Pn(V)) =
∑

λ`n
mλχλ,

where χλ denotes the character of the irreducible Sn-module corresponding to
the partition λ = (λ1, . . . , λk) of n and the nonnegative integer mλ is the multi-
plicity of χλ. Then cn(V) =

∑
λ`nmλdλ, where dλ = degχλ is the degree of the

character χλ.

Any variety of associative algebras has at most exponential growth and its ex-
ponent has a natural value (see [1] and [2]). In the general case, it was shown in [3]
that for any real number α > 1 there exists a variety Vα such that EXP(Vα) = α.
The first example of a variety of Lie algebras with fractional exponent was con-
structed in [4] and the approximate value of its exponent was calculated in [5].
Another example of a variety with fractional exponent was constructed in [6].
In the sequel we shall follow the work [7], where the necessary background was
stated.

We shall use left-normed arranging in the Lie products and shall omit the
brackets, e.g., (ab)c ≡ abc. The bar or the tilde are used to denote the alternation
of the generators. Capital letters denote the inner derivation, i.e., ad y(x) = xY =
xy. For example,

y1X1[X2, Y ] = 2(y1x1x2y + y1x2yx1 + y1yx1x2 − y1x1yx2 − y1yx2x1 − y1x2x1y),

X1[X2, X3][[X4, X5], Y ] =
∑

p∈S5

(−1)pXp(1)[Xp(2), Xp(3)][[Xp(4), Xp(5)], Y ],

where Sn is the symmetric group and (−1)p is the parity of the permutation
p ∈ Sn.

Let A2 be the variety of all metabelian Lie algebras determined by the iden-
tity

(x1x2)(x3x4) ≡ 0,

and let Ms = Fs(A
2) denote the relatively free algebra of this variety over the

set of free generators {z1, z2, . . . , zs}. Consider the linear transformation ds of
the vector space spanned by z1, z2, . . . , zs defined by the rule zids = zi+1, i =
1, 2, . . . , s− 1, zsds = 0. Then ds can be extended to a derivation of the algebra
Ms, denoted by the same letter. Let 〈ds〉 be the one-dimensional Lie algebra
generated by ds (with trivial multiplication). We may built the semidirect product
Ls = Ms h 〈ds〉. The variety generated by the algebra Ls is denoted by var(Ls),
s ∈ N.
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Theorem. For the varieties of Lie algebras var(Ls), s ∈ N, over a field of
zero characteristic the following strict inequalities hold

3 < exp(L3) < exp(L4) < · · · < exp(Ls) < exp(Ls+1) < · · · < 4.

The proof of the theorem will require the following statement.
Lemma 1. In the sum (1) the multiplicity mλ vanishes if the Young diagram

of the partition λ = (λ1, . . . , λk) of n has at least two cells below the first s + 1
rows. Also for mλ 6= 0 the lengths of the rows satisfy the following inequality:

s+1∑

i=1

(2− i) · λi + s(s− 1) ≥ 0.

Proof. Assume the contrary. Let us suppose that λ ` n has more than
two cells below the first s + 1 rows in the corresponding Young diagram. Con-
sider an element f that generates an irreducible module corresponding to λ. Let
λ′1, . . . , λ

′
l(λ) be the heights of the columns of this diagram.

According to [8], the element f is equal to a linear combination of compo-
nents, where every component contains l(λ) skew-symmetric sets with λ′i variables
in the i-th set. So, it is sufficient to prove that any multilinear Lie polynomial,
containing either s + 3 skew-symmetric variables or two sets with s + 2 skew-
symmetric variables, identically equals zero. This is clear because the algebra Ls
contains the abelian ideal M2

s of codimension s+ 1. Hence the lemma is true for
diagrams with two or more cells below the first s+ 1 rows.

Let us prove the second statement about the restrictions on the lengths of

the rows of the diagram. Consider λ = (λ1, λ2, . . . ) ` n such that
s+1∑
i=1

λi ≥

n − 1 and
s+1∑
i=1

(2 − i) · λi + s(s − 1) < 0. We shall show that this partition

determines a polynomial identity of the algebra Ls. It is sufficient to prove that
any multilinear polynomial f depending upon l = λ1 skew-symmetric sets of
variables with λ′1, . . . , λ

′
l elements, respectively, takes only zero value in Ls.

Let d, z1, z2, . . . be a basis of the algebra Ls. We shall replace the variables
of f with some of these elements. The element d can participate not more than
once in each skew-symmetric set of variables, otherwise f will be equal to zero.
Let us identify the variables in f that we substitute by d, and denote them by
b. The other variables will be denoted by y1, . . . , yk. Taking into account that
d is a derivation of the algebra Ms, we can rewrite the polynomial f as a linear
combination of the following products:

(2) (ys1b
α1)(ys2b

α2) · · · (yskbαk),

in which α1, . . . , αk ≥ 0. Note also that α1 + · · ·+ αk ≤ λ1.
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The elements yib
αi may be considered as new variables. Although the poly-

nomial f is not multilinear in these variables, it may be written as a sum f =
f1 + · · · + fm, such that each fi is a multilinear polynomial in some of the new
variables. Now we shall prove that each component f1, . . . , fm takes zero value.
For this purpose we write for example f1 as a linear combination of elements of
the form (2), then fix the indices s1, s2, and show that the partial sum f11 of f1
for these fixed s1, s2 at the first two positions equals zero.

If f is skew-symmetric in y1 and y2, then the elements from f1, . . . , fm,
which depend on y1b, y2b are also skew-symmetric in these variables. Similarly,
the skew-symmetry in y1b

j , y2b
j , where j = 2, . . . , s− 1 will be preserved. Let f

be skew-symmetric in the variables y1, y2, . . . , ys which are different from ys1 , ys2
and let y1, y2 participate in f11 as y1b

j , y2b
j with the same j = 1, . . . s− 1. If p is

a permutation of s3, . . . , sk, then

ys1ys2yp(s3) · · · yp(sk) = ys1ys2ys3 · · · ysk

in the free metabelian algebra Ms. Since f11 is skew-symmetric in y1b
j , y2b

j ,
we derive that f11 will have zero values only. In other words, if f11 depends
on y1b

α1 , y2b
α2 , . . . , yib

αi and takes a non-zero value, then all α1, α2, . . . , αi are
pairwise different and α1 + α2 + · · · + αi ≥ i(i−1)/2, i = 2, . . . , s. Recall that
the original polynomial f depends on λs+1 skew-symmetric sets of cardinality
≤ s + 1, and depends on λi − λi+1 skew-symmetric sets of cardinality i, where
i = 3, . . . , s. The variables ys1 and ys2 are used not more than twice in these sets
and it is possible to substitute by d only one variable from each set. So we have
at most λs+1−2 skew-symmetric sets with s elements and λi−λi+1 sets with i−1
elements, where i = 3, . . . , s. We have shown above that f11 may take non-zero
values only if the following condition holds:

α1 + · · ·+ αk ≥
s∑

i=3

(i− 1)(i− 2)

2
· (λi − λi+1) +

s(s− 1)

2
(λs+1 − 2).

But α1 + · · ·+ αk ≤ λ1 implies the inequality
∑s+1

i=1 (2− i) · λi + s(s− 1) ≥ 0. It
means that if

∑s+1
i=1 (2− i) · λi + s(s− 1) < 0 then f11 takes zero values only and

the same holds for f1 and f . Our lemma is proved.

Proof of the Theorem. Let V = var(Ls). Lemma 1 implies that if a
diagram has two and more cells below the first s+ 1 rows or if

∑s+1
i=1 (2− i) · λi +

s(s − 1) < 0, then the multiplicity mλ is equal to 0. In particular, the variety
satisfies the system of Capelli identities. As it is proved in [9], in this case, the
multiplicity of mλ is polynomially bounded. It is clear that the system of Capelli
identities implies that the number of terms in (1) is also polynomially bounded.
Therefore, the upper and lower limit of the exponential functions can be found
by analyzing the dimensions of the irreducible modules of the symmetric group.
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Since a limited number of cells does not affect the numerical values of the
upper and lower exponents of the variety, we consider a partition into no more
than s+ 1 parts.

Let αi = λi/n, i = 1, . . . , s + 1, be numbers corresponding to the partition
λ = (λ1, . . . , λs+1) ` n, where some of the last λi may equals zero. We consider
the function

F (α1, α2, . . . , αs+1) =

s+1∏

i=1

α−αi
i ,

where 00 = 1. For any positive integer t we consider the partition λ(t) =
(α1nt, α2nt, . . . , αs+1nt). Let dλ(t) be the dimension of the module of the sym-
metric group Snt corresponding to the partition λ(t) ` nt. By the hook-formula
for the dimension of the irreducible representations of the symmetric group and
the Stirling formula for the factorials, we obtain

lim
t→∞

nt

√
dλ(t) = F (α1, α2, . . . , αs+1).

Let T be the domain of Rs+1 defined by the conditions

(3)





α1 + α2 + · · ·+ αs+1 = 1

s+1∑

i=1

(2− i) · αi ≥ 0

α1 ≥ α2 ≥ · · · ≥ αs+1 ≥ 0.

In the second condition, we ignore the term s(s− 1), since it does not affect the
maximum value of the function.

Since the function F (−→α ) is continuous, it attains its maximal value on the
compact set T at some point −→α (0) ∈ T : Fmax = F (−→α (0)) = max−→α∈T F (−→α ).

This together with the fact that the number of terms and the multiplicities
in (1) are polynomially bounded, we conclude that HEXP(V) ≤ Fmax.

For the proof of the inequality LEXP(V) ≥ Fmax we replace the condi-
tions (3) with more accurate ones.

Lemma 2. At the maximum value of the function F (α1, α2, . . . , αs+1) all
inequalities in the third condition of (3) are strict, i.e., α1 > α2 > · · · > αs+1 > 0.

Proof. Instead of the function F (α1, α2, . . . , αs+1) we can consider its loga-
rithm

ln(F (α1, α2, . . . , αs+1)) = −α1 · ln(α1)− α2 · ln(α2)− · · · − αs+1 · ln(αs+1).

We shall show that if some of the inequalities α1 ≥ α2 ≥ · · · ≥ αs+1 ≥ 0 in the
third condition of (3) are equalities, then some of the variables αi can be changed
with saving the other conditions of (3) in such a way that the number of the
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equations in the third line will reduce, and the value of F (as well as ln(F )) will
increase. Thus after a finite number of steps we can remove all of the equalities
in the third line of (3) ensuring an increase in the value of the function. Really,
we can consider the few possible cases.

Case 1 (the leftmost and centre). In the third line there is a fragment of the
form:

αl−1 > αl = · · · = αk > αk+1 ≥ 0, where 1 < l < k < s+ 1 and α0 := 1, if l = 1.

Change the variables: (α̃l, α̃k, α̃k+1) = (αl + β, αk − 2β, αk+1 + β), and leave the
other variables unchanged. If β > 0 is small, the variation respects (3). We
consider F = F (β) as a function of β. We can verify that (ln(F (β)))′β=0+ =
ln(αk/αk+1) > 0 and for small positive β the function F (β) increases (it is true
for αk+1 = 0, when this derivative tends to +∞).

Case 2 (right extreme trivial). There is a fragment of the form:

αk−2 > αk−1 > αk > αk+1 = · · · = αs+1 = 0, where k ≥ 2 and α0 := 1, if k = 2.

Now the variation (α̃k−1, α̃k, α̃k+1) = (αk−1 + β, αk − 2β, αk+1 + β) respects (3)
and for small positive β increases both F (β) and the number of strict inequalities
in the third line of (3).

Case 3 (the rightmost positive). There is a fragment of the considered line
of the form:

αk−2 ≥ αk−1 > αk = · · · = αs+1 > 0, where 2 ≤ k < s+ 1 and α0 := 1, if k = 2.

Change the value of the variables: (α̃k−1, α̃k, α̃s+1) = (αk−1−β, αk+2β, αs+1−β),
respecting (3). Then the value of the function F (β) increases for small positive
β.

There are still two cases to be considered:

• α1 > α2 = · · · = αs+1 = 0;

• α1 = α2 = · · · = αs+1 > 0.

In the former case, if s ≥ 2, the function does not achieve its maximum. In the
latter case we have αi = 1/s and (3) implies the restriction s ≤ 2. So, Lemma 2
is proved.

Corollary 1. The maximum of F (α1, . . . , αs+1) on the domain satisfying (3)
is attained only at αs+1 6= 0. Therefore these maximums strictly increase on s:

max
(3)

F (α1, . . . , αs, αs+1) > max
(3),αs+1=0

F (α1, . . . , αs, αs+1) = max
(3)

F (α1, . . . , αs).
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Lemma 3. When s > 2 condition (3) can be replaced by more exact

(4)





α1 + α2 + · · ·+ αs+1 = 1

s+1∑

i=1

(2− i) · αi = 0

α1 > α2 > · · · > αs+1 > 0.

Proof. First, we find the maximum of F (α1, . . . , αs+1) = α−α1
1 · · · · · α−αs+1

s+1

with the only condition α1 + · · · + αs+1 = 1. It becomes clear that the point
−→α = (1/s + 1, . . . , 1/s + 1) is the only possible strict local maximum of F for
s+ 1. When some αi vanishes on the boundary of the domain, by the continuity,
the corresponding factors become unit, and F decreases. If any of the αi grows
infinitely, the function F converges to zero. Hence, the obtained stationary point
is a strict global maximum of F . For s > 3 the domain

∑s+1
i=1 (i−2) · αi < 0 does

not include the extremal point (1/s+ 1, . . . , 1/s+ 1). Thus, the local maximum
of F for conditions (3) belongs to the border of the domain stated above and
satisfies (4). Lemma 3 is proved.

Let us return to the proof of LEXP(V) ≥ Fmax. We construct the se-
quence −→α (s) with rational components in the domain T , s = 1, 2, . . . , so that
lims→∞

−→α (s) = −→α (0), lims→∞ F (−→α (s)) = Fmax, and mλ(s)(t) 6= 0 in (1) for any
positive integers s and t.

Let λ = (α1n, α2n, . . . , αs+1n) ` n, where n is the common denominator of
αi. For all positive integers t let λ(t) = (α1nt, α2nt, . . . , αs+1nt) ` nt. Now we
shall take free generators x1, . . . , xs+1, x01, and x02 of the relatively free algebra
F (V). Recall that the capital letter denotes an appropriate inner derivation of
the algebra. Denote

Rk = [. . . [X1, X01], . . . X01︸ ︷︷ ︸
k−2

][. . . [X2, X01], . . . X01︸ ︷︷ ︸
k−3

] . . . [Xk−2, X01]Xk−1,

where k = 3, . . . , s+ 1. So, R3 = [X1, X01]X2 and for example

R4 = [[X1, X01], X01][X2, X01]X3.

Let also R1 = X01, R2 = X1.
Consider the following element of the relatively free algebra F (V):

gt = x02R
(α1−

∑s+1
i=2 (i−2)·αi)nt

1 R
(α2−α3)nt
2 · · ·R(αk−αk+1)nt

k · · ·Rαs+1nt
s+1 .

In the element gt we also alternate the variable X1 from R2 with X01 from Rk,

where 4 ≤ k ≤ s+ 1. According to Lemma 3,
s+1∑
i=1

(2− i) · αi = 0, thus,

gt = x02R
(α2−α3)nt
2 · · ·R(αk−αk+1)nt

k · · ·Rαs+1nt
s+1 .

The degree of gt is nt+ 1.
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Let ft be the complete linearization of the element gt, and let Rt be the
Snt+1-submodule of Pnt+1(V), generated by ft. The element gt contains αs+1nt
alternating sets of s+ 1 variables {x01, x1, x2, . . . , xs} in each, and (αi − αi+1)nt
alternating sets of i variables {x01, x1, . . . , xi−1} in each, where i = 2, . . . , s. All
other variables, except x02, which are not included in alternating sets, are equal
to the same x01. Therefore, the decomposition of the module Rt into a direct sum
of irreducible components has only modules indexed by Young diagrams which
contain a subdiagram corresponding to the partition λ(t).

We shall prove that at least one of these irreducible submodules is not zero
in the module of multilinear polynomials Pnt+1(V). Consider the elements hi =
x02Rk, k = 2, . . . , s + 1. Make the following substitution in h2, . . . , hs+1: x02 =
z1Z

m
s , m > 0, x1 = zs, x2 = zs−1, . . . , xs = z1, x01 = d. If two elements zi, zj

in the summation fall both into the commutator bracket, then such term is zero,
because M is a metabelian ideal of Ls. Hence only one from the k! terms is not
equal to zero and the result of this substitution is equal to ±z1Zk−1+ms .

Thus, if in the element gt we make the following substitution of elements of
L: x02 = z1Z

m, x1 = zs, x2 = zs−1, . . . , xs = z1, x01 = d, the result of the
substitution is not zero.

From these inequalities we obtain that LEXP(V) = HEXP(V) = Fmax. The
problem reduces to find the maximum of the function F (α1, . . . , αs+1).

Lemma 4. For s ≥ 3

max
(4)

F (α1, . . . , αs+1) = (s+ 1) · q1−s/(2− q),

where q = q(s+ 1) is a root of the polynomial P (x) = −xs + xs−2 + 2xs−3 + · · ·+
(s− 2)x+ (s− 1).

Proof. The study of the Lagrangian of F subject to the conditions (4) gives
αi/αi+1 = q, αi = qs+1−i ·αs+1 and αs+1 = (q−1)/(qs+1−1) = (2−q)/(s+1).

Note that there are two other equations satisfied by q(s+ 1)

−xs+1 +
s∑

i=1

xi − s+ 1 = 0 and − xs+2 + 2xs+1 − sx+ s− 1 = 0.

Lemma 5. If s ≥ 2, then:

(1) the equation P (x) = 0 has unique positive solution;

(2) q(s+ 1) belongs to [1, 2) and strictly increases with s;

(3) lim
s→+∞

q(s+ 1) = 2.

Proof. (1) Clearly, x = 0 is not a solution. We rewrite the equation in the
form

(1/x)2 + 2(1/x)3 + · · ·+ (s− 2) · (1/x)s−1 + (s− 1) · (1/x)s = 1.

328 O. Malyusheva, S. Mishchenko, A. Verevkin



The left side is strictly increasing for positive 1/x from 0+ to +∞, so the equality
is realized in a unique x = q(s+ 1).

(2) We have P (1) ≥ 0, but P (2) < 0, therefore q(s+1) ∈ [1, 2). As we have
already shown y = q(s+1)−1 satisfies: y2+2y3+· · ·+(s−2)·ys−1+(s−1)·ys = 1,
also z = q(s+2)−1 complies with z2+2z3+· · ·+(s−2)·zs−1+(s−1)·zs+s·zs+1 = 1.
If for some s the inequality 1/q(s+ 2) ≥ 1/q(s+ 1) holds, then the expression of
z exceeds the expression of y, but both are equal to 1. Therefore 1/q(s + 2) <
1/q(s+ 1) and q(s+ 2) > q(s+ 1) for all s ≥ 2.

(3) The sequence q(s+1) < 2 grows, hence q(+∞) = lim
s→+∞

q(s + 1) ∈ (1, 2]

exists. Then 1/q(+∞) ∈ [0.5, 1) is a solution of the equation

1 = x2 + 2x3 + · · ·+ (s− 1) · xs + · · · = x2/(1− x)2.

Consequently, 1/q(+∞) = 0.5 and q(+∞) = 2. Lemma 5 is proved.

Let F (s+1) = max(4) F (α1, . . . , αs+1) and let αi(s+1) be the corresponding
optimal values of the variables for 1 ≤ i ≤ s+ 1.

Lemma 6.

(1) lim
s→+∞

F (s+ 1) = 4;

(2) 3 = F (3) < · · · < F (s+ 1) < F (s+ 2) < · · · < 4;

(3) lim
s→+∞

αi(s+ 1) = 2−i.

Proof. (1) According to the proof of Lemma 4,

αs+1(s+ 1) =
q(s+ 1)− 1

q(s+ 1)s+1 − 1
, F (s+ 1) =

q(s+ 1)s+1 − 1

q(s+ 1)s−1 · (q(s+ 1)− 1)
.

Then

lim
s→+∞

F (s+ 1) = lim
s→+∞

q(s+ 1)2

q(s+ 1)− 1
· q(s+ 1)s+1 − 1

q(s+ 1)s+1
= lim

q→2

q2

q − 1
= 4.

(2) By Corollary 1, the sequence F (s+1) strictly increases, therefore it holds

sup
s≥0

F (s+ 1) = lim
s→+∞

F (s+ 1) = 4.

(3) Using Lemma 4 again, we deduce

lim
s→+∞

αi(s+ 1) = lim
s→+∞

q(s+ 1)− 1

q(s+ 1)i
· q(s+ 1)s+1

q(s+ 1)s+1 − 1
= lim

q→2

q − 1

qi
= 2−i.

Thus Lemma 6 and the theorem are proved.
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