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Abstract

This paper deals with Markov branching processes allowing immigration
at random time points described by a non-homogeneous Poisson process. This
class of processes generalizes a classical model proposed by Sevastyanov, which
included a time-homogeneous Poisson immigration. The proposed model finds
applications in cell kinetics studies. Limit theorems are obtained in the su-
percritical case. Some of these results extend the classical results derived by
Sevastyanov, others offer novel insights as a result of the non-homogeneity of
the immigration process.
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1. Introduction. The first branching process model with immigration was
proposed by Sevastyanov [9]. He investigated a Markov branching process
allowing immigration at random time points arising from a homogeneous Poisson
process.

In the present paper we study a generalization of Sevastyanov’s model. In
fact, the model under consideration is also a Markov branching process, but the
times at which immigration occurs form a non-homogeneous Poisson process.
From a practical standpoint, these processes find applications in modelling the
development of renewing cell populations in vivo. For a comprehensive review
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of branching processes and their biological applications, the reader is referred to
Harris [6], Sevastyanov [10], Athreya and Ney [1], Jagers [7], Yakovlev

and Yanev [11], Kimmel and Axelrod [8], and Haccou et al. [2]. Some biolog-
ically motivated problems relevant to branching processes with non-homogeneous
Poisson immigration have been considered in Yakovlev and Yanev ([12,13]) and
Hyrien and Yanev ([3,4]).

The paper is organized as follows. Section 2 presents the biological back-
ground that introduces the general ideas and motivation behind the construction
of the models formulated in Section 3. The basic equations for the probability
generating function (p.g.f.) and the moments are also treated in Section 3. Limit
theorems for the supercritical processes are presented in Section 4. The limiting
results obtained in Theorems 1 and 2 can be regarded as generalizations of the
classical result established by Sevastyanov [9]. The results presented in Theorems
3 and 4 offer novel insights that result from the non-homogeneity of the process.

2. Biological background and motivation. Continuous-time branching
processes have been used to quantify the development of cell populations in cell
kinetics studies. In practical applications, the population contains N0 cells at
the onset of the experiment. For example, when studying tissue development
during embryogenesis, it is reasonable to set N0 = 0 if the experiment begins
before the first cell of the tissue has been generated. As time increases, cells will
begin populating the tissue of interest once precursor cells have started differen-
tiating. We refer to these cells as immigrants and describe their influx using a
non-homogeneous Poisson process with arrival rate r(t). Upon arrival, these im-
migrants are assumed to be of age zero. Upon completion of its life-span, every cell
of the population either divides into two new cells, or it exits the population (due
to cell differentiation or cell death). These events occur with probability p and
q = 1−p, respectively. The lifespan of any cell is described by a non-negative ran-
dom variable τ with cumulative distribution function (c.d.f.) G(x) = P{η ≤ x}
that satisfies G(0) = 0. Cells are assumed to evolve independently of each other.
The work presented in this paper was motivated by this example, and we inves-
tigated properties of a more general class of Markov branching processes with
non-homogeneous Poisson immigration.

3. Models and equations. We consider a process that begins with the im-
migration of differentiating precursor cells into the population. Every immigrant
is of age zero at the time of immigration. Every cell has a random life-span η
with c.d.f. G(t) = P{η ≤ t} = 1 − e−t/µ, t ≥ 0. At the end of its life-span, every
cell produces a random number of offspring ξ with p.g.f. h(s) = E[sξ], |s| ≤ 1.
We assume that all newborn cells are of zero age and continue their evolutions
independently of every other cell and in the same way. Therefore the development
of this population can be described within the framework of Markov branching
processes with immigration.
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The moments of the offspring distribution

m = E[ξ] =
dh(s)

ds

∣∣∣∣
s=1

and m2 = E[ξ(ξ − 1)] =
d2h(s)

ds2

∣∣∣∣
s=1

,

as well as the mean life-span µ =

∫
∞

0
xdG(x), play an important role in the

behaviour of the process. We shall assume that these characteristics are finite.
The models with offspring p.g.f. h(s) = 1− p + ps2, and moments m = 2p =

m2, have a clear biological interpretation: at the end of its mitotic cycle, every
cell either dies with probability 1−p or, it divides in two cells with probability p.
This example could deserve special attention, but we shall investigate the general
case.

Let us first consider the process without immigration. Let Z(t) denote the
number of cells at time t, and introduce the corresponding p.g.f.: F (t; s) =
E[sZ(t)|Z(0) = 1]. Under the assumptions, it is not difficult to realize that
{Z(t), t ≥ 0} is a Markov branching process, and its p.g.f. is characterized by the
following nonlinear differential equation:

∂F (t; s)

∂t
= f(F (t; s)), F (0; s) = s,(1)

where f(s) = [h(s) − s]/µ (see e.g. Harris [6]).

Note that the Malthusian parameter α is determined as usually from the

equation m
∞∫

0

e−αxdG(x) = 1. For the model under consideration, we have

α = f ′(1) = [m − 1]/µ. In what follows we shall consider only the supercritical
case α > 0, corresponding to m > 1. Introduce also β = f ′′(1) = m2/µ. Then the
first two moments of the process are given by (see e.g. Harris [6]):

A(t) =
∂F (t; s)

∂s

∣∣∣∣
s=1

= E[Z(t)|Z(0) = 1] = eαt,(2)

B(t) =
∂2F (t; s)

∂s2

∣∣∣∣
s=1

= E[Z(t)(Z(t) − 1)|Z(0) = 1] =
β(e2αt − eαt)

α
,

V (t) = V ar[Z(t)] = (β/α − 1)eαt(eαt − 1).(3)

Let us now describe the process with immigration. First we will assume that
0 = S0 < S1 < S2 < S3 < · · · are the time points of the immigration which form
a non-homogeneous Poisson process Π(t) with a rate r(t), i.e. the cumulative rate
is R(t) =

∫ t
0 r(u)du, r(t) ≥ 0, and Π(t) ∈ Po(R(t)). Let Ui = Si − Si−1 be the

inter-arrival times. Then Sk =
∑k

i=1 Ui, k = 1, 2, . . . .

We will also assume that at every point Sk there is a random number Ik

of cells all of age zero which immigrate into the population, where {Ik}
∞

k=1 are
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i.i.d. r.v. with p.g.f. g(s) = E[sIk ] =
∑

∞

i=0 gis
i, |s| ≤ 1. Let γ = E[Ik] =

dg(s)

ds
|s=1 be the immigration mean and introduce the second factorial moment

γ2 =
d2g(s)

ds2
|s=1 = E[Ik(Ik − 1)].

Let Y (t) denote the number of cells at time t in the process with immigration,
where the cell evolution is determined by the above-defined (G,h) – Markov
branching processes. The process admits the following representation

Y (t) =






Π(t)∑
k=1

ZIk(t − Sk), if Π(t) > 0,

0, if Π(t) = 0,

(4)

where ZIk(t) are i.i.d. branching processes, which behave like Z(t), but started
with a random number of ancestors Ik. We assumed that Y (0) = 0; the process
Y (t) begins from the first non-zero immigrants.

Introduce the p.g.f. Ψ(t; s) = E[sY (t)|Y (0) = 0]. Using the decomposition
(4), Yakovlev and Yanev ([13], Theorem 1) obtained that

(5) Ψ(t; s) = exp{−

∫ t

0
r(t − u)[1 − g(F (u; s))]du}, Ψ(0, s) = 1,

where, in our case, the p.g.f. F (u; s) satisfies equation (1).
The process {Y (t), t ≥ 0} is a time non-homogeneous Markov process. Notice

that if {Ui}
∞

i=1 are i.i.d. r.v. with c.d.f. G0(x) = P{Ui ≤ x} = 1 − e−rx, x ≥ 0,
then Π(t) reduces to an ordinary Poisson process with cumulative rate R(t) = rt.
Our model reduces to the model with immigration proposed by Sevastyanov [9].

Introduce the moments of the process with immigration

M(t) = E[Y (t)|Y (0) = 0] =
∂Ψ(t; s)

∂s

∣∣∣∣
s=1

,

M2(t) = E[Y (t)(Y (t) − 1)|Y (0) = 0] =
∂2Ψ(t; s)

∂s2

∣∣∣∣
s=1

,

W (t) = V ar[Y (t)] = M2(t) + M(t)(1 − M(t)).

Then it is not difficult to deduce from eqn (5) that

M(t) = γ

∫ t

0
r(t − u)A(u)du,(6)

M2(t) = γ

∫ t

0
r(t − u)B(u)du

+

[
γ

∫ t

0
r(t − u)A(u)du

]2

+ γ2

∫ t

0
r(t − u)A2(u)du,

W (t) =

∫ t

0
r(t − u)[γV (u) + (γ + γ2)A

2(u)]du.(7)
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In order to derive equations for the covariance of the process, we consider the

joint p.g.f. F (s1, s2; t, τ) = E[s
Z(t)
1 s

Z(t+τ)
2 |Z(0) = 1], τ ≥ 0. Conditioning on the

evolution of the initial cell and applying the law of the total probability yields
the equation

F (s1, s2; t, τ) =

∫ t

0
h(F (s1, s2; t − u, τ))dG(u)(8)

+ s1

∫ t+τ

t
h(F (1, s2; t, τ − v))dG(v) + s1s2(1 − G(t + τ)),

with the initial condition F (s1, s2; 0, 0) = s1s2 (see also Harris [6]).
Let us now introduce the joint p.g.f. for the process with immigration Y (t)

defined by (4)

Ψ(s1, s2; t, τ) = E[s
Y (t)
1 s

Y (t+τ)
2 |Y (0) = 0], τ ≥ 0.

Similarly to (5), one can obtain that

Ψ(s1, s2; t, τ) = exp{−

∫ t

0
r(u)[1 − g(F (s1, s2; t − u, τ))]du

−

∫ t+τ

t
r(v)[1 − g(F (1, s2; t, τ − v))]dv}.(9)

To establish this identity, one has to consider definition (4) and follow the method
developed in (Yakovlev and Yanev [13], Theorem 1) for (5). Introduce the mo-
ments

A(t, τ) = E[Z(t)Z(t + τ) | Z(0) = 1] =
∂2F (s1, s2; t, τ)

∂s1∂s2

∣∣∣∣
s1=s2=1

,

M(t, τ) = E[Y (t)Y (t + τ) | Y (0) = 0] =
∂2Ψ(s1, s2; t, τ)

∂s1∂s2

∣∣∣∣
s1=s2=1

.

Then from eqn (8) and (9) the following equations hold:

A(t, τ) = m

∫ t

0
A(t − u, τ)dG(u) + m2

∫ t

0
A(t − u)A(t + τ − u)dG(u)

+ m

∫ t+τ

t
A(t + τ − u)dG(u) + 1 − G(t + τ),(10)

M(t, τ) =

∫ t

0
r(u)[γA(t − u, τ) + γ2A

2(t − u)]du

+ γ2

[∫ t

0
r(u)A(t − u)du

]2

,
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C(t, τ) = Cov[Y (t), Y (t + τ)] =
∂2 log Ψ(s1, s2; t, τ)

∂s1∂s2

∣∣∣∣
s1=s2=1

=

∫ t

0
r(u)[γA(t − u, τ) + γ2A(t − u)A(t + τ − u)]du.(11)

The initial conditions are A(0, τ) = A(τ) and M(0, τ) = 0 = C(0, τ).
4. Limit theorems. Recall that we consider the supercritical case α > 0.

Then from eqn (6) one has

M(t) = γeαtr̂t(α),

where

r̂t(α) =

∫ t

0
e−αur(u)du.

Assume first that

(12) lim
t→∞

r̂t(α) = r̂(α) < ∞.

Remark 1. The condition (12) is fulfilled if, for example, r(t) = L(t)tθ,
−∞ < θ < ∞, and L(t) is a s.v.f., or r(t) = O(eρt), ρ < α.

Theorem 1. Assume that condition (12) is satisfied. Then

ζ(t) = Y (t)/M(t)
L2−→ ζ, as t → ∞,

where E[ζ] = 1 and V ar[ζ] = r̂(2α)(αγ + βγ2)/[αr̂2(α)γ2].
We next consider the case where

(13) r(t) = reρt, r > 0, ρ > 0.

Then it follows from eqns (2) and (6) that

(14) M(t) =






γreαt/(α − ρ), ρ < α
γrteαt, ρ = α
γreρt/(ρ − α), ρ > α.

Also, we deduce from eqns (2), (3) and (7) that, as t → ∞,

(15) W (t) ∼






K
2α−ρe2αt, ρ < 2α

Kte2αt, ρ = 2α
K1e

ρt, ρ > 2α,

where K = r(γβ/α + γ2) and K1 = K/(ρ − 2α) + rγ(1 − β/α)/(ρ − α).
Moreover, using eqns (2), (10) and (11), we obtain that

(16) C(t, τ) = Ke2αt+ατ

∫ t

0
e(ρ−2α)udu + rγ(1 − β/α)eαt+ατ

∫ t

0
e(ρ−α)udu.
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Finally, letting t → ∞ in eqn (16) yields

C(t, τ)e−ατ ∼






K
2α−ρe2αt, ρ < 2α

Kte2αt, ρ = 2α
K1e

ρt, ρ > 2α.

Theorem 2. Assume that condition (13) holds true with ρ < α. Then, as

t → ∞,

ζ(t) = Y (t)/M(t)
L2−→ ζ and ζ(t)

a.s.
−→ ζ,

where E[ζ] = 1 and V ar[ζ] = K(α − ρ)2/(γr)2, with K = r(γβ/α + γ2).
Theorem 3. Assume that condition (13) holds true with ρ ≥ α. Then, as

t → ∞,

ζ(t) = Y (t)/M(t)
L2−→ 1 and ζ(t)

a.s.
−→ 1.

Remark 2. Note that Theorem 3 can be interpreted as a LLN because
Y (t)

M(t)
→ 1, a.s. Hence one can conjecture a CLT.

Theorem 4. Assume that condition (13) holds true with ρ ≥ α and X(t) =
[Y (t) − M(t)]/

√
W (t). Then a CLT holds:

(i) If α ≤ ρ < 2α, then

X(t)
d

−→ N(0, 1) as t → ∞;

(ii) If ρ > 2α, then

X(t)
d

−→ N(0, σ2) as t → ∞,

where σ2 = (ρ − 2α)[αβ + γ2(ρ − α)]/(ρ − α)[γβ + γ2(ρ − α) + γ(ρ − 2α)].
Remark 3. Recall that the relation

X(t) = [Y (t) − M(t)]/
√

W (t)
d

−→ N(0, σ2) as t → ∞

is often presented as Y (t) ∈ N(M(t), σ2W (t)) and one can say that Y (t) has
asymptotic normality with a mean M(t) and a variance σ2W (t). Then from The-
orem 4, using eqns (14) and (15), one obtains the following relations which give
a more convenient interpretation for the rate of convergence:

(a) If ρ = α, then Y (t)/teαt ∈ N(γr,Kt−2/α);

(b) If α < ρ < 2α then Y (t)/eρt ∈ N(γr/(ρ − α),Ke−2(ρ−α)t/(2α − ρ));

(c) If ρ = 2α, then Y (t)/e2αt ∈ N(γr/α,Kte−2αt);

(d) If ρ > 2α, then Y (t)/eρt ∈ N(γr/(ρ − α), σ2K1e
−ρt).
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Note that these relations are also useful for constructing asymptotic confident
intervals.

The proofs of the limit theorems presented herein will appear in [5].
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